General Physics: Electromagnetism, Problem Set 9

Exercise 1:

A long straight wire of radius a carries a current that is uniformly distributed over its cross-section. Find the magnetic field both inside and outside the wire.

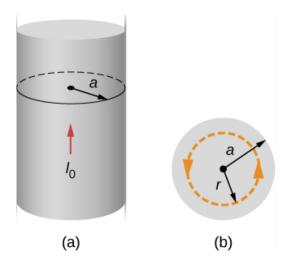


Figure 1: (a) A model of a current-carrying wire of radius a and current I_0 (b) A cross-section of the same wire showing the radius a and the Ampere's loop of radius r.

Exercise 2:

Consider an infinitely long, cylindrical conductor of radius R carrying a current I with a non-uniform current density

$$J = \alpha r \tag{1}$$

where α is a constant. Find the magnetic field everywhere.

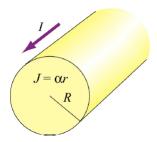
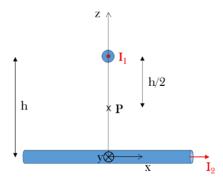



Figure 2: Non-uniform current density

Exercise 3:

Two long wires of radius a are perpendicularly oriented as shown in figure below. The upper wire has a current I_1 in the \hat{y} direction and the lower cable has a current I_2 in the \hat{x} direction.

- (a) Find the magnetic field along the z axis, between z = a and z = h.
- (b) For $I_1 = 100$ A and $I_2 = 150$ A, with the distance h = 2.5 cm, what is the magnitude of the magnetic field at point P?
- (c) Describe the direction of the compass needle placed in point P. **Hint**: The magnetic field of Earth is about $5 \cdot 10^{-5}$ T.

Exercise 4:

Consider two infinitely long wires carrying currents are in the x direction.

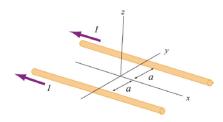


Figure 3: Non-uniform current density

- (a) Draw a schematic of the magnetic field pattern in the yz-plane.
- (b) Find the distance d along the z-axis where the magnetic field is maximum.

Exercise 5:

Consider a toroid as shown in Figure 4 with a big radius R and a small radius a. The toroid contains N turns of the wire with current I. Suppose that the number of turns N is very large, such that we can consider cylindrical symmetry. Calculate the magnetic field \overrightarrow{B} for:

- (a) r < R a;
- (b) R a < r < R + a;
- (c) r > R + a;

and draw the lines of the field. What is the magnitude of the magnetic field in r=R if I=500 A, N=100 and R=0.5 m?

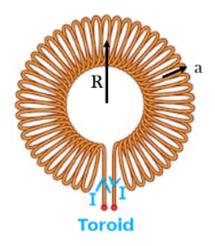


Figure 4: Toroid

Exercise 6:

Find the minimum diameter of the wires d that can transmit P=225 MW of electricity with only a 2.0% loss. Their length is l=185 km. Assume there are two wires to make a complete circuit (the length is thus doubled). The wires are to be made of aluminum ($\rho=2.6\cdot 10^{-8}~\Omega\cdot m$) and the voltage is V=660 kV.